

# Oracy: learning to talk and learning through talk



Oracy is a set of skills which allow us to communicate effectively and encompasses learning to talk and learning through talk; both involve **speaking and listening**. Learning **to** talk should lead to learning **through** talk. The aim is for learners to articulate their mathematical thinking, to make it clear to themselves and others, and to make sense of the mathematical thinking of others, developing a relational understanding of the mathematics<sup>1</sup>. To achieve this, teachers will need to support exploratory talk<sup>2</sup>, use dialogic teaching<sup>3</sup> and 'orchestrate productive mathematical discussion'<sup>4</sup>.

### Learning to talk includes:

- Establishing the psycho-social conditions which encourage and support exploratory talk; a classroom ethos that supports communities of learners where everyone's voice is valued, all learners have the potential to influence others and consensus building is central to lessons. This may involve:
  - o Supporting all learners by addressing/removing feelings and thoughts that act as a barrier, by saying:
    - What's your first thought?
    - What could you do? What might work?
    - Imagine you are the sort of person who could do this, what would you do?
    - What would Batman/Elastigirl do?
  - o In response to other learners, learners use sentence starters and questions:
    - I agree/disagree because...
    - I think differently...
    - I'm not sure but ...
    - Can I make a suggestion?
    - Can I ask a question?
    - Do you mean...?
  - Deliberate positioning of both the teacher and the speaker during episodes of both 'private talk' and 'public conversation'<sup>5</sup>:
    - During private talk (in pairs/trios) teachers:
      - Provide space for talk without intervening, sitting and noting from a distance
      - Move around, listening in to select and sequence contributions for public conversation
      - Prime learners so that they can rehearse their thinking before speaking publicly
    - During public conversation (large group/whole class)
      - Speakers stand up in their place or come to the front so that they are prepared to speak publicly, and other learners know where to focus their attention
      - Teachers position themselves across the class from the speaker to encourage projection so that everyone can hear
  - Talking about talk, explicitly identifying aspects of talk useful to the group:
    - I am listening out for people who...
    - Reproposal<sup>6</sup>: I heard...say...
    - Praising talk, distinctly from mathematics: I like the way you started by saying...
- Being supported to articulate thinking in full sentences. This may involve:
  - Using sentence starters such as:
    - I notice...
    - I think...because...
    - I know...
    - I wonder...
  - o Repeating well-structured sentences spoken by other learners and adults.
    - Attend to precision in repeating before rephrasing. Ask 'Is that exactly what you said?'
  - Creating meaningful sentences employing both mathematical and everyday vocabulary.
    - Requiring use of given words and phrases such as:
      - Describe the fraction using the word 'divided'.
      - Explain what you notice about the pattern using the word 'multiple'.
    - Being specific and avoiding the use of pronouns:
      - Saying 'The numerator is seven' rather than 'It is seven'.





# Oracy: learning to talk and learning through talk



#### Learning through talk includes:

- Establishing the cognitive conditions where there is something mathematically worthwhile to talk about by providing mathematical experiences that provoke thinking. This will involve:
  - Teachers providing time and space for children to think and articulate their thinking:
    - Allowing thinking time before talking
    - Expecting all learners to share their mathematical thinking
    - Asking authentic questions<sup>7</sup>
    - Praising thinking distinctly from correctness
- Teacher modelling thinking aloud with careful, precise use of language.
- Exposing, accessing, and understanding mathematical structure. This may involve:
  - Careful use of stem sentences, spoken in full by learners, with a focus on mathematical structure such as:
    - To find one ... of a shape you divide it into ... equal parts.
    - I have...one tenths. I have... tenths.
    - There are ... rows of... There are...altogether.
  - Repeating
    - Drawing attention to a response that exposes something about the mathematics and ask the class or an individual to repeat this response word for word.
  - Rephrasing
    - Can you explain what Megan said in your own words? Megan, is that what you meant?
  - Consensus building<sup>8</sup>:
    - Making sense of the appropriateness of strategies that are presented
    - Examining how presented strategies are both meaningful and efficient
    - Connecting different strategies presented
    - Extracting the general rule that can explain the differences in the presented strategies
  - o Creating generalisations together such as:
    - For unit fractions, the larger the denominator, the smaller the fraction.
    - Angles which meet at a point on a straight-line sum to 180 degrees.
- Mathematical questions arising from students. This may involve:
  - Clarifying understanding linked to the learner's responsibility when listening.
    - Using sentence starters and shared questions such as:
      - Why does...?
      - Can I ask a question?
      - What do you mean by...?
  - Clarifying understanding linked to the learner's responsibility when speaking:
    - Does anyone want to ask me a question?
  - o Questions prompted by the mathematics:
    - Will it always be ...?
    - Does that always happen?
    - What would happen if...?

#### Reference notes:

- <sup>1</sup> Skemp, R. R. (1976). Relational understanding and instrumental understanding. Mathematics Teaching, 77, 20-26.
- <sup>2</sup> Mercer, N. & Dawes, L. (2008) *The Value of Exploratory Talk* in Exploring Talk in School: Inspired by the Work of Douglas Barnes, Sage Publishing
- <sup>3</sup> Alexander, R. (2008) Towards Dialogic Teaching: Rethinking Classroom Talk, Dialogos
- <sup>4</sup> Smith, M. S., & Stein, M. K. (2011). <sup>5</sup> practices for orchestrating productive mathematics discussions. Reston, VA: National Council of Teachers of Mathematics.
- <sup>5</sup> Askew, M. (n.d.) Private Talk, Public Conversation available online: http://mikeaskew.net/page3/page5/files/Privatetalkpublicconverse.pdf
- <sup>6</sup> Parker, C. (2001) In Experiencing Reggio Emilia: Implications for pre-school provision, ed. L. Abbott, and C. Nutbrown, OUP.
- Schaffalitzky, (2022) What makes questions authentic, 428- 2022-02-03 Dialogic Pedagogy
- Noriyuki Inoue, Tadashi Asada, Natsumi Maeda, Shun Nakamura, (2019) Deconstructing teacher expertise for inquiry-based teaching: Looking into consensus building pedagogy in Japanese classrooms, Teaching and Teacher Education, Volume 77, 366-377

